

# Command-line & Web Guide

## Preamble

- This User Guide documents the Web server and standalone program ESPript developed by Patrice GOUET and Xavier ROBERT in the "Retroviruses and Structural Biochemistry" research team of the "MMSB" laboratory (UMR5086 CNRS / University Lyon 1). ESPript is an application supported by SBGrid.
- ESPript can be run either online via a Web interface or from the command line on Linux operating systems.
- The Web version is referred to as webESPript in this User Guide.
- The command line ESPript 3.x binary is freely downloadable (only available for x86-64 Linux OS) see the F.A.Q. section.
- All the commands described below are accessible in webESPript in the EXP MODE .
- Fewer functions are accessible on webESPript in BEG and ADV MODES.

What does the ESPript input file look like in the standalone program?

| Typical Input File |                            |                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|--------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                    |                            | example                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1                  | Aligned Sequences          | <pre>file.aln 5-50 1 + file.pdb cns.ctc</pre>                                                                                                                                                                                         |  |  |  |  |  |  |
| 2                  | Secondary Structures       | <pre>file1.2st A file2.phd A 9 all</pre>                                                                                                                                                                                              |  |  |  |  |  |  |
| 3                  | Output                     | file.ps L SEQ                                                                                                                                                                                                                         |  |  |  |  |  |  |
| 4                  | Similarity Score           | 0.7 0.5 R C                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 5                  | Output Layout              | 7 70 6 0 0 0 C P N                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 6                  | Special Commands           | <pre>@skip<br/>@pp<br/>@minus 5 40<br/>@ruler<br/>@seq 5 text<br/>@col R .8 0 0 B 0 0 .8<br/>@aA1 aA2 bB1 hH1 bB2<br/>@nott<br/>@top a 10-20 30-40 b 50-55<br/>@noname<br/>@noalt<br/>@nodi<br/>@sub oldname1 newname1<br/>@phy</pre> |  |  |  |  |  |  |
|                    | Special Characters         | U B 2<br>L D 10-16                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                    | Comment                    | %This is a reminder                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                    | Ending the section         | (single dot on a single line)                                                                                                                                                                                                         |  |  |  |  |  |  |
| 7                  | Defining Groups and Blocks | 1-4 9 %8<br>6 5 7<br>(single dot on a single line)                                                                                                                                                                                    |  |  |  |  |  |  |

1 Line 1: Aligned Sequences

| Content | Sequence-File | Selected-Range | Start-Index | Extra-Input | PDB-File | CNS-File |
|---------|---------------|----------------|-------------|-------------|----------|----------|
| Example | file.aln      | 5-50           | 1           | +           | file.pdb | cns.ctct |
| MODE    | BEG           | ADV            | ADV         | ADV         | EXP      | EXP      |

|                                              | <ul> <li><u>Sequence-File</u></li> <li>File name of the aligned sequences - see <b>Appendix 1</b> for more details.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                              | <u>Selected-Range</u> [default: whole sequence]<br>Range of residues to be displayed (for example 5-50).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
|                                              | Start-Index [default: 1]<br>Renumbers the residues, so that the first displayed sequence starts at the specified Start-Index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| re                                           | If the first displayed sequence starts with ATREYES, the command line file.aln 5-4500 2 gives YES and Y is numbered as the second residue. Do not enter a Start-Index value if the first residue is already numbered in file.aln, as explained in <b>Appendix 1</b> . You can check the residue numbering of all sequences using option N described in section <b>Output Layout</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|                                              | <ul> <li><u>Extra-Input</u> [default: none]</li> <li>Specifying a + enables layers or extra input - see layer example for more details.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                              | <ul> <li><u>PDB-File</u> [default: none]<br/>Name of a PDB file. A PDB output will be generated with occupancy factors replaced by similarity score per residue - see Appendix 2.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|                                              | <u>NS-File</u> [default: none]<br>ame of a CNS file containing a list of intermolecular contacts - see <b>Appendix 3</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| 2) Li                                        | ine 2: Secondary Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
|                                              | Content Sec.Str-File Acc-Disp Sec.Str-File Acc-Disp ScoreConfidence AutomaticSearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|                                              | <b>Example</b> file1.2st A file2.2st A 9 all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|                                              | MODE BEG BEG ADV ADV ADV ADV ADV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Th<br>By<br>re<br>stu<br>Se<br>(c<br>fo<br>E | <ul> <li>onomer, but you can select a different chainID with the 'chain_X' command (example: file1.2st chain_B).</li> <li>hree types of layout are used, depending on wether one or two secondary structure files are supplied: <ul> <li>1. If one secondary structure file is provided (uploaded in the TOP secondary structures box in webESPript): Secondary structure elements are displayed at the top of each block of sequences and relative accessibility is shown at the bottom.</li> <li>2. If two secondary structure elements of the first file (uploaded in the TOP secondary structures box in webESPript) and the corresponding accessibility are displayed at the top of each block.</li> <li>secondary structure elements of the first file (uploaded in the BOTTOM secondary structures box in webESPript) and the corresponding accessibility are displayed at the top of each block.</li> <li>3a. If file1.2st is entered as usual and the string none is entered as file2.2st: secondary structure elements and relative accessibility are displayed at the bottom of each block.</li> <li>3b. If the string none is entered as file1.2st and file2.2st is entered in turn: secondary structure elements of the second file and relative accessibility are displayed at the bottom of each block.</li> <li>y default, file1.2st (TOP secondary structures in webESPript) and file2.2st (BOTTOM secondary structures in webESPript) of the first and the last displayed sequences. This default can be changed by using the Special Character X for the first secondary tructure file and Z for the second.</li> </ul> </li> <li>econdary structure elements can be extracted by reading the alignment file file.aln, if you enter the character * instead of file1.2st the dec Sec. Succture file.aln twice and can be used realignment files from PredictProtein or from NPS@, which contain information on predicted secondary structure elements - see xample 1.</li> </ul> |  |  |  |  |  |  |  |  |  |
| Di<br>∘ <u>Sc</u><br>If                      | isplays <b>relative accessibility</b> when uploading DSSP or <b>PHD</b> files as file1.2st or file2.2st.<br><u>coreConfidence</u> [default: 9]<br>the secondary structure file is a <b>PHD</b> file, secondary elements with a reliability equal at least to ScoreConfidence are highlighted. If<br>eliability is below the limit, helices appear as small squiggles, β-strands as dotted lines and labels are not written - see <b>Example 1</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| ES<br>Th                                     | utomaticSearch [default: none]<br>SPript searches in the directory \$DSSP_DIR (defined as an environment variable) for files having the same name as aligned sequences.<br>his allows secondary structure information to be displayed for any aligned sequence with a known 3D structure. This option requires that<br>bu have the corresponding DSSP files in \$DSSP_DIR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                  | xample                                                                                                                                                                                                                                  | file.ps                                                                                                                                                                                                                              | L or M                                                                                                                                                                                                                                                                               |                                                                                                                                                                          | SEQ                                                                                                                                                                                                                     |                                                                                                |                                                                                                                                 |                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    | MODE                                                                                                                                                                                                                                    | BEG                                                                                                                                                                                                                                  | BEG                                                                                                                                                                                                                                                                                  |                                                                                                                                                                          | EXP                                                                                                                                                                                                                     |                                                                                                |                                                                                                                                 |                                                                                                                                                                  |
| Output-file<br>Name of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PostScript out                                                                                                                                                                                                                                                                                                                                                                                               | tput file.                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                |                                                                                                                                 |                                                                                                                                                                  |
| With the L op<br>strands with I<br>You can remo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-, 3_{10}$ - and $\pi$ -h<br>ption, helices a<br>letters.                                                                                                                                                                                                                                                                                                                                                   | and β-strand<br>dary structur                                                                                                                                                                                                                                                      | ds are nun<br>re labels by                                                                                                                                                                                                              | nbered with l                                                                                                                                                                                                                        | , 0                                                                                                                                                                                                                                                                                  | with 'A'. W                                                                                                                                                              |                                                                                                                                                                                                                         | ,                                                                                              |                                                                                                                                 | nbered with digit                                                                                                                                                |
| <ul> <li><u>SequenceOu</u></li> <li>The SEQ opti</li> <li>multiple align</li> <li>written to a fill</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | itput<br>ion(Extract<br>iment file ente                                                                                                                                                                                                                                                                                                                                                                      | reference se<br>ered as fil<br>e.seq. The                                                                                                                                                                                                                                          | equence in<br>e.aln. By<br>extracted                                                                                                                                                                                                    | <sup>,</sup> default, this<br>sequence ca                                                                                                                                                                                            | sequence cor<br>n be used in N                                                                                                                                                                                                                                                       | responds                                                                                                                                                                 | to the first o                                                                                                                                                                                                          | ne disp                                                                                        | layed in the                                                                                                                    | le letter code fr<br>ESPript figure a<br>eries. The SEQ o                                                                                                        |
| Line 4: Simi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | larity Score                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                |                                                                                                                                 |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conter                                                                                                                                                                                                                                                                                                                                                                                                       | nt Simila                                                                                                                                                                                                                                                                          | arityGlobal                                                                                                                                                                                                                             | Score Simi                                                                                                                                                                                                                           | larityDiffScore                                                                                                                                                                                                                                                                      | Si                                                                                                                                                                       | milarityType                                                                                                                                                                                                            |                                                                                                | Consensus                                                                                                                       |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exampl                                                                                                                                                                                                                                                                                                                                                                                                       | le                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                  | R, B, F                                                                                                                                                                  | P, I or S,                                                                                                                                                                                                              | М, Е                                                                                           | С                                                                                                                               |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODE                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    | BEG                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | DEO                                                                                                                                                                                                                     |                                                                                                |                                                                                                                                 |                                                                                                                                                                  |
| SimilarityGlol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | balScore [defa                                                                                                                                                                                                                                                                                                                                                                                               | ault: 0.7]                                                                                                                                                                                                                                                                         | n similarity                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | BEG                                                                                                                                                                                                                     | all pos                                                                                        | BEG                                                                                                                             | s pair per colu                                                                                                                                                  |
| <u>SimilarityGlol</u><br>- If R, B, P o<br>applicable, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>balScore</u> [defa<br>or I as Simila<br>second score                                                                                                                                                                                                                                                                                                                                                      | ault: 0 <b>.</b> 7]<br>rityType: a<br>is calculate                                                                                                                                                                                                                                 | n similarity<br>global scc<br>ad within ea                                                                                                                                                                                              | ore is calcula<br>ach group of                                                                                                                                                                                                       | and colour scl                                                                                                                                                                                                                                                                       | quences by                                                                                                                                                               |                                                                                                                                                                                                                         | all pos                                                                                        |                                                                                                                                 | s pair per colu                                                                                                                                                  |
| <ul> <li><u>SimilarityGlol</u></li> <li>If R, B, P o applicable, a</li> <li>If S, M or E a</li> <li>If the score idefault and w</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     | balScore [defa<br>or I as Similal<br>second score<br>as SimilarityTy<br>is greater that<br>vhite characte                                                                                                                                                                                                                                                                                                    | ault: 0.7]<br>rityType: a<br>i s calculate<br>pe: a perce<br>n Similarity<br>rs on a red                                                                                                                                                                                           | n similarity<br>global scc<br>ed within ea<br>ntage is ca<br>GlobalSco<br>backgrour                                                                                                                                                     | ore is calcula<br>ach group of<br>alculated for e<br>re, it will be<br>nd if residues                                                                                                                                                | and colour scl<br>ated for all sec<br>sequences.<br>sach column of<br>rendered as o                                                                                                                                                                                                  | quences by<br>fresidues.<br>coloured cl<br>n are strictl                                                                                                                 | y extracting<br>haracters (re                                                                                                                                                                                           | ed char                                                                                        | sible residue<br>acters on a<br>rames (blue                                                                                     | white backgrou                                                                                                                                                   |
| <ul> <li>SimilarityGlol</li> <li>If R, B, P o<br/>applicable, a</li> <li>If S, M or E a</li> <li>If the score is<br/>default and w<br/>strictly conse</li> <li>SimilarityDiffs</li> <li>Applicable if</li> </ul>                                                                                                                                                                                                                                                                                                                                               | balScore [defa<br>r I as Similar<br>second score<br>as SimilarityTy<br>is greater that<br>white characte<br>rved residues<br>Score [default:                                                                                                                                                                                                                                                                 | ault: 0.7]<br>rityType: a<br>is calculate<br>pe: a percei<br>n Similarity<br>rs on a red<br>are boxed l<br>: 0.5]<br>s SimilarityT                                                                                                                                                 | n similarity<br>global scc<br>ed within ea<br>ntage is ca<br>GlobalSco<br>backgrour<br>but are not                                                                                                                                      | ore is calcula<br>ach group of<br>alculated for e<br>re, it will be<br>nd if residues<br>t framed, if yo                                                                                                                             | and colour sci<br>ated for all sec<br>sequences.<br>each column of<br>rendered as of<br>s in the column<br>ou enter a Simi                                                                                                                                                           | quences by<br>residues.<br>coloured cl<br>n are strictl<br>larityGloba                                                                                                   | y extracting<br>haracters (re<br>ly conserved<br>llScore great                                                                                                                                                          | ed char<br>) with f<br>er than                                                                 | sible residue<br>acters on a<br>rames (blue<br>1.                                                                               | s pair per colur<br>white backgrour<br>by default). Not<br>ne group to an                                                                                        |
| applicable, a<br>- If S, M or E a<br>If the score if<br>default and w<br>strictly conse<br><u>SimilarityDiffs</u><br>Applicable if<br>are highlighte<br><u>SimilarityTyp</u><br>- If R, B, P or<br>recommend a<br>- If S: a perce<br>- If M: a perce<br>- If E: a perce                                                                                                                                                                                                                                                                                        | balScore [defa<br>r I as Similar<br>second score<br>as SimilarityTy<br>is greater than<br>white characte<br>rrved residues<br><u>Score</u> [default:<br>R, B, P or I as<br>ed (yellow bac<br><u>e</u> [default: R]<br>I: a <b>matrix</b> i<br>a SimilarityGlo<br>entage of similarity<br>entage of equi                                                                                                      | ault: 0.7]<br>rityType: a<br>is calculate<br>pe: a percet<br>n Similarity<br>rs on a red<br>are boxed l<br>: 0.5]<br>s SimilarityT<br>is used to c<br>obalScore of<br>thy conserve<br>arity is calcu<br>valent resid                                                               | n similarity<br>global scc<br>ed within ea<br>ntage is ca<br>GlobalSco<br>backgrour<br>but are not<br>ype: residu<br>default).<br>calculate th<br>f 0.1-0.2<br>ed residues<br>ulated takin<br>dues per co                               | ore is calcula<br>ach group of<br>alculated for e<br>re, it will be<br>nd if residues<br>t framed, if yo<br>ues which are<br>ne similarity s<br>with B or P m<br>s per column<br>ng into accou                                       | and colour sci<br>ated for all sec<br>sequences.<br>each column of<br>rendered as of<br>in the column<br>ou enter a Simi<br>e conserved v<br>score. Risler, E<br>atrices and of<br>is calculated.<br>in the criteria of                                                              | quences by<br>f residues.<br>coloured cl<br>n are strictl<br>larityGloba<br>vithin a gr<br>BLOSUM62<br>0.6-0.7 w<br>used in Mu<br>nto accour                             | y extracting<br>haracters (re<br>ly conserved<br>ilScore great<br><b>oup but not</b><br>2, <b>P</b> AM250 a<br>vith R or I ma<br>l <b>tAlin</b> (IV / I<br>nt physico-ch                                                | ed char.<br>) with fi<br>er than<br><b>conse</b><br>and Ide<br>atrices.<br>.M / FY /<br>emical | sible residue<br>acters on a<br>rames (blue<br>1.<br><b>rved from o</b><br>ntity are the<br>'NDQEBZ).<br>properties: H          | white backgroun<br>by default). Note                                                                                                                             |
| <ul> <li>SimilarityGlol</li> <li>If R, B, P o<br/>applicable, a</li> <li>If S, M or E a</li> <li>If the score is<br/>default and w<br/>strictly conse</li> <li>SimilarityDiffs</li> <li>Applicable if<br/>are highlighted</li> <li>SimilarityTypp</li> <li>If R, B, P or<br/>recommenda</li> <li>If S: a percee</li> <li>If M: a percee</li> <li>If E: a percee</li> <li>DE are polar is</li> <li>Consensus [of<br/>A consensus]</li> </ul>                                                                                                                    | balScore [defa<br>r I as Similar<br>second score<br>as SimilarityTy<br>is greater that<br>white characte<br>rved residues<br><u>Score [default:</u><br>R, B, P or I as<br>ed (yellow bac<br><u>e [default:</u> R]<br>I a <b>matrix</b> i<br>a SimilarityGlo<br>entage of strict<br>entage of strict<br>entage of sequi<br>negative, STNO<br>default: none]<br>sequence is g<br>nyone of LM, 9                | ault: 0.7]<br>rityType: a<br>is calculate<br>pe: a percei<br>n Similarity<br>rs on a red<br>are boxed l<br>: 0.5]<br>s SimilarityT<br>kground by<br>is used to c<br>obalScore of<br>ty conserve<br>arity is calcu-<br>valent resid<br>Q are polar r                                | n similarity<br>global scc<br>ed within ea<br>ntage is ca<br>GlobalSco<br>backgrour<br>but are not<br>ype: residu<br>default).<br>calculate th<br>f 0.1-0.2<br>ed residues<br>ulated takin<br>lues per cc<br>neutral, AV                | ore is calcula<br>ach group of<br>alculated for e<br>nd if residues<br>t framed, if you<br>ues which are<br>the similarity s<br>with B or P m<br>s per column<br>ng into accou<br>olumn is calcu<br>LIM are non p                    | and colour scl<br>ated for all sec<br>sequences.<br>each column of<br>rendered as of<br>s in the column<br>ou enter a Simi<br>e conserved v<br>score. Risler, E<br>atrices and of<br>is calculated.<br>int the criteria u<br>ulated, taking i<br>polar aliphatic,<br>IultAlin: upper | i residues.<br>coloured cl<br>are stricti<br>larityGloba<br>vithin a gr<br>BLOSUM62<br>0.6-0.7 w<br>used in <b>Mu</b><br>nto accour<br>FYW are no                        | y extracting<br>haracters (re<br>y conserved<br>alScore great<br>oup but not<br>2, PAM250 a<br>ith R or I ma<br>altAlin (IV / I<br>ht physico-ch<br>on polar aror<br>entity, lowerc                                     | ed chara<br>) with fi<br>er than<br>conse<br>and Ide<br>atrices.<br>                           | sible residue<br>acters on a<br>rames (blue<br>1.<br><b>rved from o</b><br>ntity are the<br>'NDQEBZ).<br>properties: H<br>'GC). | white backgroun<br>by default). Not<br><b>ne group to an</b><br>four possibilities                                                                               |
| <ul> <li>SimilarityGlol</li> <li>If R, B, P o<br/>applicable, a</li> <li>If S, M or E a</li> <li>If the score if<br/>default and w<br/>strictly conse</li> <li>SimilarityDiffs</li> <li>Applicable if<br/>are highlighte</li> <li>SimilarityTyp</li> <li>If R, B, P or<br/>recommend a</li> <li>If S: a percee</li> <li>If M: a percee</li> <li>If E: a percee</li> <li>DE are polar if</li> <li>Consensus [of<br/>A consensus<br/>of IV, \$ is ar</li> </ul>                                                                                                  | balScore [defa<br>r I as Similar<br>second score<br>as SimilarityTy<br>is greater that<br>white characte<br>rrved residues<br><u>Score</u> [default:<br>R, B, P or I as<br>ed (yellow bac<br><u>e</u> [default: R]<br>I: a <b>matrix</b> i<br>a SimilarityGlo<br>entage of simila-<br>intage of simila-<br>entage of equi<br>negative, STNQ<br>default: none]<br>sequence is g<br>hyone of LM, %             | ault: 0.7]<br>rityType: a<br>is calculate<br>pe: a percei<br>n Similarity<br>rs on a red<br>are boxed l<br>: 0.5]<br>s SimilarityT<br>kground by<br>is used to c<br>obalScore of<br>ty conserve<br>arity is calcu-<br>valent resid<br>Q are polar r                                | n similarity<br>global scc<br>ed within ea<br>ntage is ca<br>GlobalSco<br>backgrour<br>but are not<br>ype: residu<br>default).<br>calculate th<br>f 0.1-0.2<br>ed residues<br>ulated takin<br>lues per cc<br>neutral, AV                | ore is calcula<br>ach group of<br>alculated for e<br>nd if residues<br>t framed, if you<br>ues which are<br>the similarity s<br>with B or P m<br>s per column<br>ng into accou<br>olumn is calcu<br>LIM are non p                    | and colour scl<br>ated for all sec<br>sequences.<br>each column of<br>rendered as of<br>s in the column<br>ou enter a Simi<br>e conserved v<br>score. Risler, E<br>atrices and of<br>is calculated.<br>int the criteria u<br>ulated, taking i<br>polar aliphatic,<br>IultAlin: upper | i residues.<br>coloured cl<br>are stricti<br>larityGloba<br>vithin a gr<br>BLOSUM62<br>0.6-0.7 w<br>used in <b>Mu</b><br>nto accour<br>FYW are no                        | y extracting<br>haracters (re<br>y conserved<br>alScore great<br>oup but not<br>2, PAM250 a<br>ith R or I ma<br>altAlin (IV / I<br>ht physico-ch<br>on polar aror<br>entity, lowerc                                     | ed chara<br>) with fi<br>er than<br>conse<br>and Ide<br>atrices.<br>                           | sible residue<br>acters on a<br>rames (blue<br>1.<br><b>rved from o</b><br>ntity are the<br>'NDQEBZ).<br>properties: H<br>'GC). | white backgroun<br>by default). Note<br>ne group to an<br>four possibilities<br>IKR are polar po                                                                 |
| <ul> <li>SimilarityGlol</li> <li>If R, B, P o<br/>applicable, a</li> <li>If S, M or E a</li> <li>If the score is<br/>default and v<br/>strictly conse</li> <li>SimilarityDiffs</li> <li>Applicable if<br/>are highlighter</li> <li>SimilarityType</li> <li>If R, B, P or<br/>recommend a</li> <li>If S: a perces</li> <li>If M: a perces</li> <li>If E: a perces</li> <li>If E: a perces</li> <li>DE are polar if</li> <li>Consensus [a</li> <li>A consensus<br/>of IV, \$ is ar<br/>used as Similarity Similarity</li> </ul>                                  | balScore [defa<br>r I as Similar<br>second score<br>as SimilarityTy<br>is greater that<br>white characte<br>rved residues<br><u>Score</u> [default:<br>R, B, P or I as<br>ed (yellow bac<br><u>e</u> [default: R]<br>I a <b>matrix</b> i<br>a SimilarityGlo<br>entage of strict<br>entage of strict<br>entage of sequi<br>negative, STNO<br>default: none]<br>sequence is g<br>hyone of LM, 9<br>larityType. | ault: 0.7]<br>rityType: a<br>is calculate<br>pe: a percei<br>n Similarity<br>rs on a red<br>are boxed l<br>: 0.5]<br>s SimilarityT<br>kground by<br>is used to c<br>obalScore of<br>ty conserve<br>arity is calcu-<br>valent resid<br>Q are polar r                                | n similarity<br>global scc<br>ed within ea<br>ntage is ca<br>GlobalSco<br>backgrour<br>but are not<br>ype: residu<br>default).<br>calculate th<br>f 0.1-0.2<br>ed residues<br>ulated takin<br>lues per cc<br>neutral, AV                | ore is calcula<br>ach group of<br>alculated for e<br>nd if residues<br>t framed, if you<br>ues which are<br>the similarity s<br>with B or P m<br>s per column<br>ng into accou<br>olumn is calcu<br>LIM are non p                    | and colour scl<br>ated for all sec<br>sequences.<br>each column of<br>rendered as of<br>s in the column<br>ou enter a Simi<br>e conserved v<br>score. Risler, E<br>atrices and of<br>is calculated.<br>int the criteria u<br>ulated, taking i<br>polar aliphatic,<br>NDQEBZ. Iower   | i residues.<br>coloured cl<br>are stricti<br>larityGloba<br>vithin a gr<br>BLOSUM62<br>0.6-0.7 w<br>used in Mu<br>nto accour<br>FYW are no<br>case is ide<br>case is col | y extracting<br>haracters (re<br>y conserved<br>alScore great<br>oup but not<br>2, PAM250 a<br>ith R or I ma<br>altAlin (IV / I<br>ht physico-ch<br>on polar aror<br>entity, lowerc                                     | ed chara<br>) with fi<br>er than<br>conse<br>and Ide<br>atrices.<br>                           | sible residue<br>acters on a<br>rames (blue<br>1.<br><b>rved from o</b><br>ntity are the<br>'NDQEBZ).<br>properties: H<br>'GC). | white backgroun<br>by default). Note<br>ne group to an<br>four possibilities<br>IKR are polar po                                                                 |
| <ul> <li>SimilarityGlol         <ul> <li>If R, B, P o<br/>applicable, a</li> <li>If S, M or E a</li> </ul> </li> <li>If the score if<br/>default and w<br/>strictly conse</li> <li>SimilarityDiff<br/>Applicable if<br/>are highlighte</li> <li>SimilarityTyp-<br/>If R, B, P or<br/>recommend a</li> <li>If S: a percee</li> <li>If M: a percee</li> <li>If E: a percee</li> <li>If E: a percee</li> <li>If E: a perces</li> <li>DE are polar if</li> <li>Consensus [of<br/>A consensus<br/>of IV, \$ is ar<br/>used as Simi</li> <li>Line 5: Outp</li> </ul> | balScore [defa<br>r I as Similar<br>second score<br>as SimilarityTy<br>is greater that<br>white characte<br>rved residues<br><u>Score</u> [default:<br>R, B, P or I as<br>ed (yellow bac<br><u>e</u> [default: R]<br>I a <b>matrix</b> i<br>a SimilarityGlo<br>entage of strict<br>entage of strict<br>entage of sequi<br>negative, STNO<br>default: none]<br>sequence is g<br>hyone of LM, 9<br>larityType. | ault: 0.7]<br>rityType: a<br>is calculate<br>pe: a percei<br>n Similarity<br>rs on a red<br>are boxed l<br>: 0.5]<br>s SimilarityT<br>kground by<br>is used to c<br>obalScore of<br>thy conserve<br>arity is calcu-<br>valent resid<br>Q are polar r<br>generated u<br>% is anyone | n similarity<br>global scc<br>ad within ea<br>ntage is ca<br>GlobalSco<br>backgrour<br>but are not<br>ype: residu<br>default).<br>calculate th<br>f 0.1-0.2<br>dd residues<br>ulated takin<br>lues per cc<br>neutral, AV<br>using the c | ore is calcula<br>ach group of<br>alculated for e<br>ne, it will be<br>nd if residues<br>t framed, if you<br>ues which are<br>with B or P m<br>s per column<br>on is calcu-<br>LIM are non p<br>riteria from <b>N</b><br>s anyone of | and colour scl<br>ated for all sec<br>sequences.<br>each column of<br>rendered as of<br>s in the column<br>ou enter a Simi<br>e conserved v<br>score. Risler, E<br>atrices and of<br>is calculated.<br>int the criteria u<br>ulated, taking i<br>polar aliphatic,<br>NDQEBZ. Iower   | i residues.<br>coloured cl<br>are stricti<br>larityGloba<br>vithin a gr<br>BLOSUM62<br>0.6-0.7 w<br>used in Mu<br>nto accour<br>FYW are no<br>case is ide<br>case is col | y extracting<br>haracters (re<br>y conserved<br>ilScore great<br>oup but not<br>2, PAM250 a<br><i>i</i> th R or I ma<br>litAlin (IV / I<br>th physico-ch<br>on polar aror<br>entity, lowerconsensus level<br>PrinterOpt | ed char.<br>) with f<br>er than<br>conse<br>and Ide<br>atrices.<br>                            | sible residue<br>acters on a<br>rames (blue<br>1.<br><b>rved from o</b><br>ntity are the<br>'NDQEBZ).<br>properties: H<br>'GC). | white backgroun<br>by default). Note<br>ne group to an<br>four possibilities<br>IKR are polar po<br>wel > 0.5, ! is an<br>Score if S, M or<br>AllNumbere<br>X, N |

<u>FontSize</u> [default: 7]
 Size in points for the Courier font (sequence names and residues).

| <ul> <li><u>ColumnNb</u> [default: 60]</li> <li>Number of residue columns per row.</li> </ul>                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Vgap [default: 6]<br>Vertical gap between two blocks of sequences. The unit for the distance is the height of a line.                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| <u>Vshift</u> [default: 0]<br>Vertical shift for the whole display. The unit for the distance is the height of a line.                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Hshift [default: 0 - centered]<br>Horizontal shift for the entire display. The unit for the distance is the width of a residue.                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| <ul> <li><u>Bshift</u> [default: 0]</li> <li>Shift lines below bottom sequence. The unit for the distance is the width of a residue.</li> </ul>                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| <ul> <li><u>PrinterOpt</u> [default: C]</li> <li>C coloured output, T coloured with all letters in bold, S light cyan background, B black &amp; white, a grey scale is used ,F flashy colours, similar residues are written with black bold characters and boxed in yellow.</li> </ul>                                                                                                                 |  |  |  |  |  |  |  |
| <ul> <li><u>Paper</u> [default: P]</li> <li>P: Portrait A4, P3: Portrait A3, P0: Portrait A0, PU: Portrait US Letter, PX: Portrait 'Tapestry', L: Landscape A4, L3: Landscape A3, L0: Landscape A0, LU: Landscape US Letter, LX: Landscape 'Tapestry'.</li> </ul>                                                                                                                                      |  |  |  |  |  |  |  |
| <ul> <li><u>AllNumbered</u> [default: first sequence]</li> <li>By default, the first sequence is numbered every ten residues as in <b>Example 2</b>. With the option N (check Number sequences option in webESPript ) all sequences are numbered at the beginning of each block of sequences as in <b>Example 3</b>.</li> </ul>                                                                        |  |  |  |  |  |  |  |
| 6 Lines 6: Special Commands                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Hide sequences                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Example @skip<br>MODE ADV                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Aligned sequences are not written (check Hide sequences in webESPript ). This option can be used to build a figure with several secondary structure elements as in Example 4. @skip is a shortcut for the block of Special Characters below:<br>I S all ! skip all<br>F S all ! skip all<br>H S all ! skip all<br>B S all ! skip all<br>N S all ! skip all<br>N S all ! skip all<br>Y S all ! skip all |  |  |  |  |  |  |  |
| More info from a file from PredictProtein or NPS@                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Example @pp MODE ADV                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Additional information can be extracted using the @pp command if:                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| <ul> <li>A result file from the <b>PredictProtein</b> server is entered as <b>file.aln</b>:<br/>ProDom domains are visualized with yellow bars below each block of sequences. 'x' marks from the SEG low-complexity <sup>(1)</sup> search are<br/>represented with dotted lines. Peptides resulting from a PROSITE <sup>(2)</sup> search are shown with bold letters.</li> </ul>                       |  |  |  |  |  |  |  |
| <ul> <li>A file from the NPS@ server with multiple sequence alignment and predicted secondary structure elements is entered as file.aln:</li> <li>Predicted secondary structure elements are shown below each aligned sequence (<i>i.e.</i> helices with squiggles, β-strands with arrows, ambiguous predictions with solid circles).</li> </ul>                                                       |  |  |  |  |  |  |  |
| • Minus / Plus                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Example<br>@minus 5 40<br>@plus 63                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| MODE                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |

The residue numbering can be changed along a single sequence. If @minus is used, the numbering is shifted by -1 at the given column (here at columns 5 and 40). If @plus is used, the residue numbering is shifted by +1 at the given column. Before using this option, use the command @ruler described below to visualize column numbers.

@minus and @plus are equivalent to the options Delete in seq numbering and Insert in seq numbering in webESPript. Note that, by default, the sequence numbering refers to the first displayed sequence, but it can refer to the third displayed sequence (for example) if you enter the **Special Command** Y D 3.

Column numbers are displayed. This option is useful when preparing a figure with the special commands @minus or @plus presented above, or the **Special Characters** Q, V, W.

| Example@seq 5 text<br>@seq vp7_ehdv1 textMODEEXP | Insert text at sequences |         |                                    |
|--------------------------------------------------|--------------------------|---------|------------------------------------|
| MODE                                             |                          | Example | 0seq 5 text<br>0seq vp7_ehdv1 text |
|                                                  |                          | MODE    | EXP                                |

The command is: @seq [sequence number or sequence name] [text or blank] The text is then inserted **above** the chosen sequence. Note that sequences numbers are given in the log file of ESPript.

Special case: the text is inserted **below** the last displayed sequence, if you chose a number greater than the number of displayed sequences. Thus, you can give a name to a line of **Special Characters** and change the colour of the name with the Special Character T.

| Modify or create colours |         |                                |
|--------------------------|---------|--------------------------------|
|                          | Example | @col R .8 0 0<br>@col B 0 0 .8 |
|                          | MODE    | EXP                            |

Assigns a new RGB code for a Special Characters colour in ESPript. You can also create a new special character colour, such as A for grey:

@col A .5 .5 ! create a new colour named A
I A all ! strictly conserved residues are in grey

*Remark:* a new character colour must be created before being used as in the example above. S is reserved to skip. Otherwise, any uppercase character can be used. Have a look at this **site** to chose new colours and corresponding <u>percent</u> RGB values (range is 0.0-1.0 and white is 1 1 1).

| Example @aA1 aA2 bB1 hH1 bB2<br>@aA3 bB3 |
|------------------------------------------|
|                                          |
| MODE                                     |

Secondary structure labels can be replaced by new ones defined by the user. Labels starting by a, b, h, p refer to  $\alpha$ -helices,  $\beta$ -strands,  $3_{10}$ -helices and  $\pi$ -helices respectively. These first characters are not displayed. Replacement is made according to the order of entrance (see **Example 4**), firstly through the top secondary structure elements, then through the bottom secondary structure elements, if applicable.

Command lines can be written with all  $\alpha$ -helices firstly, then all  $\beta$ -strands, 3<sub>10</sub>- and  $\pi$ -helices. For instance you can remove labels of all 3<sub>10</sub>-helices by typing as many @h h h h h as needed.

If the first letter is typed in uppercase (@Ag1 Ag2), the second letter is displayed using a Symbol font (here, displayed labels would be  $\gamma 1 \gamma 2$ ).

| • Hid | e turns | ; |
|-------|---------|---|
|-------|---------|---|

| Example | Qnott |
|---------|-------|
| MODE    | ADV   |

Strict α- and β-turns, usually rendered as TTT and TT, are not displayed (see information on secondary structures).

| Insert secondary structure elements |         |                                               |  |
|-------------------------------------|---------|-----------------------------------------------|--|
|                                     | Example | @top a 10-20 20-30 b 50-55<br>@bottom b 25-35 |  |
|                                     | MODE    | EXP                                           |  |

Inserts  $\alpha$ -helices (a),  $\beta$ -strands (b),  $3_{10}$ -helices (h) or  $\pi$ -helices (p) at the top or bottom of sequences blocks. Rules of numbering are the same as in section **Secondary Structures** (*i.e.* by default, top and bottom secondary structure elements match top and bottom sequences, respectively).

You can enter up to 264 characters on this line of command. Click on the button +1 of the interface to duplicate the form if you exceed this limit. Thus, you may be able to enter  $\alpha$ -helices in Layer 0 and  $\beta$ -strands in Layer 1, while still being under the limit of 264 characters in each part.

| Hide names of secondary structure elements |         |         |
|--------------------------------------------|---------|---------|
|                                            | Example | @noname |
|                                            | MODE    | ADV     |
|                                            |         |         |

Removes the name of the corresponding sequence at the beginning of each line of secondary structure elements. By default, this name has the same colour as the first displayed element.

Remark: assume a very special case, where your sequence starts at 10, and you want to colour secondary structure name in red and secondary structure elements in blue. Then you can use the **Special Characters** command X: X R 10-10

## X B 11-4500

| Hide alternate conformations                                                                             |                                      |                                             |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|--|--|--|--|--|
|                                                                                                          | Example                              | Gnoalt                                      |  |  |  |  |  |
|                                                                                                          | MODE                                 | ADV                                         |  |  |  |  |  |
| Removes grey stars added on the top of blocks of sequences, above residues with alternate conformations. |                                      |                                             |  |  |  |  |  |
| Hide disulphide bridges                                                                                  |                                      |                                             |  |  |  |  |  |
|                                                                                                          | Example<br>MODE                      | @nodi<br>ADV                                |  |  |  |  |  |
| Removes green digits (1 1, 2 2) adde                                                                     | d on the figure at the bottom of sec | equences blocks to show disulphide bridges. |  |  |  |  |  |
| Substitute sequence names                                                                                |                                      |                                             |  |  |  |  |  |
|                                                                                                          | Example @sub oldname1 n              | newname1 oldname2 newname2                  |  |  |  |  |  |

Replaces the name of a sequence contained in your alignment file file.aln by a new one. You can substitute up to 15 names. Suppose you want to change the names of the first and third displayed sequences, you can enter: @sub 1 newname1 3 newname2

| Color by residues physicochemical properties                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                             | Example @phy<br>MODE ADV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| residues                                                                                    | are coloured according to their physico-chemical properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Lines 6b                                                                                    | : Special Characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Conten                                                                                      | t Character-Type Character-Colour Positio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Options                                                                                     | P, T, R, X, Y, Z, Q, V, W, U, D, G, J, S, C, E, L, K, A, I, F, M, D, B, R, P, G, F, C,<br>H, B, O, N, s, t, u, a, b, c, d, e, f, g, h, i, j, k, l, m, n O, Y, M, W, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Example                                                                                     | U R 2 9-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| MODE                                                                                        | ADV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                             | TYPES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                             | A I F M H B O N U D G J S C E L K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                             | $\beta \blacksquare A \blacksquare A \square A ▲ ▼ ► ◀ ★ ● O … ■$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                             | stuabcdefghijklmn<br><sup>NH J J Ν Ν Ν α α α β β β Ν α α β α</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                             | ▋●○■▋■┃■┃→4<>2<>3<>4<>4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                             | DBRPGFCOYMWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                             | DBRPGFCOYMWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                             | <b>D B R P G F C O Y M W S</b><br><b>B B B B B B B B B B B B B B B B B B B </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Miscella                                                                                    | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Р                                                                                           | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                             | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| P<br>T                                                                                      | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| P<br>T<br>R                                                                                 | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary elements can be changed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y                                                            | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>changed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| P<br>T<br>R<br><b>Assignm</b><br>X<br>Y<br>Z                                                | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y<br>Z<br>Do it you                                          | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary elements can be changed.<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary elements can be changed.<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>diaged.<br>residue numbering of another sequence, which is the last one by default, can be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>urself                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| P<br>T<br>R<br><b>Assignm</b><br>X<br>Y<br>Z                                                | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y<br>Z<br>Do it you<br>Q<br>V<br>W                           | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>intermolecular contacts<br>reads intermolecular contacts<br>reads intermolecular contacts<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default, can be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>Interest |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y<br>Z<br>Do it you<br>Q<br>V<br>W<br>Changin                | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nemt<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary elements can be changed.<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary elements can be changed.<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of<br>changed.<br>residue numbering of another sequence, which is the last one by default, can be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>Irreeiff<br>boxes residues (see Example 5)<br>bold characters<br>adds frames<br>g default colours of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y<br>Z<br>Do it you<br>Q<br>V<br>W                           | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>ent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default, can be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>reside<br>blocks (see Example 5)<br>bloid characters<br>adds frames<br>g default colours of<br>labels above top secondary structure elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y<br>Z<br>Do it you<br>Q<br>V<br>W<br>Changin<br>A<br>I<br>F | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>nent<br>to p secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>secondary elements can be changed.<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default, can be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>residue numbering of another sequence, which is the last one by default, can be displayed (see Example 3).<br>residue numbering of another sequence can also be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>residue numbering of another sequences can also be displayed at the bottom of sequences<br>blocks. Secondary structure elements<br>identity boxes<br>identity boxes<br>identity boxes<br>identity boxes                                                                          |  |  |  |  |  |
| P<br>T<br>R<br>Assignm<br>X<br>Y<br>Z<br>Do it you<br>Q<br>V<br>W<br>Changin<br>A<br>I      | Entry on each line is: Character-Type Colour Position<br>example: U R 2 9-39 adds red (R) triangles (U) at residue 2 and at residues 9 to 39 (2 9-39)<br>Character-Type<br>neous<br>calculates hydropathy<br>changes colour of sequence names<br>reads intermolecular contacts<br>ent<br>top secondary structure information is assigned to a chosen sequence, which is the first one by default. Colour of<br>sequence numbering is assigned to a chosen sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the first one by default. Colour of digits can be<br>changed.<br>residue numbering of another sequence, which is the last one by default, can be displayed at the bottom of sequences<br>blocks. Secondary structure information corresponding to this sequence can also be displayed (see Example 3).<br>urself<br>boxes residues (see Example 5)<br>bold characters<br>adds frames<br>g default colours of<br>labels above top secondary structure elements<br>identity boxes                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

| 0                                                                                                                  |                                                             | ference s                   | ,       | oxes        |                         |                    |                                         |              |            |       |             |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|---------|-------------|-------------------------|--------------------|-----------------------------------------|--------------|------------|-------|-------------|
| N                                                                                                                  | ,                                                           |                             |         |             |                         |                    |                                         |              |            |       |             |
| Adding r                                                                                                           | narkers                                                     | i                           |         |             |                         |                    |                                         |              |            |       |             |
| U                                                                                                                  | tria                                                        | triangle up (see Example 2) |         |             |                         |                    |                                         |              |            |       |             |
| D                                                                                                                  | tria                                                        | angle dow                   | vn      |             |                         |                    |                                         |              |            |       |             |
| G                                                                                                                  | go                                                          | 1                           |         |             |                         |                    |                                         |              |            |       |             |
| J                                                                                                                  | jar                                                         | nmed                        |         |             |                         |                    |                                         |              |            |       |             |
| S                                                                                                                  | sta                                                         |                             |         |             |                         |                    |                                         |              |            |       |             |
| С                                                                                                                  |                                                             | lid circle                  |         |             |                         |                    |                                         |              |            |       |             |
| E                                                                                                                  |                                                             | en circle                   |         |             |                         |                    |                                         |              |            |       |             |
| L                                                                                                                  |                                                             | tted line                   |         |             |                         |                    |                                         |              |            |       |             |
| К                                                                                                                  | str                                                         | oke                         |         |             |                         |                    |                                         |              |            |       |             |
| Adding N                                                                                                           | MR ma                                                       | rkers                       |         |             |                         |                    |                                         |              |            |       |             |
| s amide proton slow exchange rate (< 1mn <sup>-1</sup> )                                                           |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
| t                                                                                                                  | $^{3}J_{HN,H\alpha}$ NH-H $\alpha$ coupling constant < 6 Hz |                             |         |             |                         |                    |                                         |              |            |       |             |
| $^{3}J_{HN,H\alpha}$ NH-H $\alpha$ coupling constant $\geq$ 7 Hz                                                   |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
| a, b, c d <sub>NN</sub> (i,i+1) NOE between proton NH of residue i and i+1 (weak, medium, strong)                  |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
| d, e, f $d_{\alpha N}(i,i+1)$ NOE between proton $\alpha$ of residue i and proton NH of i+1 (weak, medium, strong) |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
| g, h, i $d_{\beta N}(i,i+1)$ NOE between proton $\beta$ of residue i and proton NH of i+1 (weak, medium, strong)   |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
| j d <sub>NN</sub> (i,i+2) NOE between proton NH of residue i and proton NH of i+2                                  |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
| k                                                                                                                  |                                                             |                             |         |             | n a of residue i        |                    |                                         |              |            |       |             |
| 1                                                                                                                  |                                                             |                             |         |             | n $\alpha$ of residue i |                    |                                         |              |            |       |             |
| m                                                                                                                  |                                                             |                             |         |             | n $\alpha$ of residue i |                    |                                         |              |            |       |             |
| n                                                                                                                  | dα                                                          | <sub>N</sub> (i,i+4)        | NOE bet | ween proto  | nαof residue i          | and proto          | n NH of i+4                             |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             | <u>c</u> l              |                    |                                         |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             |                         | cter-0             |                                         |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             | (except if              | R is Char          | acter-Type)                             |              |            |       |             |
| D                                                                                                                  | В                                                           | R                           | Р       | G           | F                       | С                  | 0                                       | Y            | М          | W     | S           |
| Black                                                                                                              | Blue                                                        | Red                         | Pink    | Green       | Green fluo              | Cyan               | Orange                                  | Yellow       | Maroon     | White | Transparent |
|                                                                                                                    |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
|                                                                                                                    |                                                             |                             | By dofo | ult residue |                         | Position of accord |                                         | et die playe | d soqueres |       |             |
| By default, residues are numbered according to the first displayed sequence [ ] means mandatory and { } optional   |                                                             |                             |         |             |                         |                    |                                         |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             |                         | -                  | Type= <b>P</b> , <b>T</b>               |              |            |       |             |
|                                                                                                                    |                                                             |                             |         |             | il chi                  |                    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |            |       |             |

[sequence name number or range] {other sequence name number or range} {...}

Example 1: to calculate hydropathy of the third displayed sequence: P R 3 (the string hyd will be written in red) Example 2: to colour the name of the second sequence in green: T G 2

if Character-Type= R

[chainId] [residue range] {other residue range} {...}

See Appendix for details on intermolecular contacts

1

2

if Character-Type= X, Y, Z

[name or number of sequence displayed] {Start-Index (1 by default)}

or

[residue range] {other residue range} {...}

Example 1: to assign the first secondary structure file to the third displayed sequence: X B 3 (sec. structure elements are in blue) Example 2: to number the fourth displayed sequence in blue: Z B 4 (the same command Z B 4 can be used to assign the second sec. structure file to the fourth displayed sequence and to colour sec. structure elements in blue).

Example 3: to colour elements in blue and red: X B 3 (secondary structure elements refer to the 3 displayed sequence and are in blue. This sequence is now the reference)

X R 4-50 60-80 (but secondary structure elements from residues 4 to 50 and from 60 to 80 are in red)

Remark: you can type X B name\_of\_the\_third\_displayed\_sequence instead of X B 3

if Character-Type= Q, V, W

[number or range of sequence displayed] {column range} {other column range} {...}

4 Note that, here, column numbering is used instead of residue numbering. Use the command **@ruler** to preview column numbers. Example 1: to highlight in yellow residues of sequences 3-8 from columns 40 to 45 and from 50 to 55: Q Y 3-8 40-45 50-55 Example 2: to highlight the last sequence in cyan: Q C 1000

if Character-Type= U, D, S, C, L, A, I, F, M, H, B, O, N, s, t, u, a, b, c, d, e, f, g, h, i, j, k, l, m, n
[residue number or range] {other residue number or range} {...}

Example 1: to add red triangles at residue 2 and from 9 to 39: U R 2 9-39

- Example 2: to box all identical residues in blue: I B 1-4500
- 5 Example 3: to remove all secondary structure labels: A S 1-4500

By default, positions refer to residue numbering of the first displayed sequence. Use the special command Y to change this default: Y B 3 (residue numbering refers to the 3 displayed sequence and residues numbering in blue)

U R 9 20-30 (adds red triangles below columns containing residues 9 and 20 to 30 of sequence 3)

| 8 Line 6c: Co                                                                                                                                                                                                                                           | omment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                         | Example %This is a reminder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                         | MODE ADV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A line beginning                                                                                                                                                                                                                                        | with % will be displayed at the bottom of the generated PostScript, as a comment or a title.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9 Line 6d: En                                                                                                                                                                                                                                           | nding the section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                         | Example .<br>MODE ADV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A single dot on a                                                                                                                                                                                                                                       | a line ends this section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 Lines 7: De                                                                                                                                                                                                                                          | fining Groups and Blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                         | Example 1-4 9 %8<br>6 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                         | MODE BEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| all can be used<br>A % before a seq<br>You can also sep<br>display as in <b>Exa</b><br><b>M</b> ultalin or <b>E</b> quiv                                                                                                                                | to select the rest of the sequences: 2 all (see <b>Example 5</b> ).<br>Juance number keeps a sequence for similarity calculations but prevents it from displaying: 2 %1 %3-5 (see <b>Example 4</b> ).<br>parate your sequences in groups for similarity computations, each line defining a group and giving the order of the sequences to<br><b>ample 2</b> ( <b>ADV</b> or <b>EXP</b> modes in webESPript). The calculation by group is not performed if <b>SimilarityType</b> is <b>Strice</b><br>valent (groups are just numbered).<br>nded by a single dot on a single line. |
| 11 Appendix                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • file.aln                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| file.aln is an AS                                                                                                                                                                                                                                       | CII file containing aligned sequences. The following formats are supported:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>MultAlin <sup>(3)</sup></li> <li>ProDom <sup>(4)</sup></li> <li>ClustalW <sup>(5)</sup></li> <li>Clustal Om</li> <li>NPS@ <sup>(7)</sup></li> <li>FASTA <sup>(8)</sup></li> <li>SeaView <sup>(9)</sup></li> <li>PDB <sup>(10)</sup></li> </ul> | ega <sup>(6)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                         | e other aligned sequences, be sure to keep two fields per line: the first one is the name of the sequence, the second one th<br>Use white characters (spaces) to separate the two fields; use blank lines to separate two blocks as in:                                                                                                                                                                                                                                                                                                                                          |
| vp7_btv1s<br>vp7_btv10                                                                                                                                                                                                                                  | MDTIAARALTVMRACATLQEARIVLEANVMEILGIAINRYNGLTLRGVTMRPTSLAQRNE<br>MDTIAARALTVMRACATLQEARIVLEANVMEILGIAINRYNGLTLRGVTMRPTSLAQRNE                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| vp7_btv1s<br>vp7_btv10                                                                                                                                                                                                                                  | MFFMCLDMMLSAAGINVGPISPDYTQHMATIGVLATPEIPFTTEAANEIARVTGETSTWG<br>MFFMCLDMMLSAAGINVGPISPDYTQHMATIGVLATPEIPFTTEAANEIARVTGETSTWG                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FASTA format fo                                                                                                                                                                                                                                         | or multiple alignments is supported. Sequences can be entered as below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| > vp7_btv1s<br>MDTIAARALTVMR/                                                                                                                                                                                                                           | ACATLQEARIVLEANVMEILGIAINRYNGLTLRGVTMRPTSLAQRNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

MFFMCLDMMLSAAGINVGPISPDYTQHMATIGVLATPEIPFTTEAANEIARVTGETSTWG > vp7\_btv10

MDTIAARALTVMRACATLQEARIVLEANVMEILGIAINRYNGLTLRGVTMRPTSLAQRNE MFFMCLDMMLSAAGINVGPISPDYTQHMATIGVLATPEIPFTTEAANEIARVTGETSTWG

If a Start-Index is present in file.aln (at least in the first block of sequences), residue numbering is modified accordingly. Format is title\_Start-Index\_ or title(Start-Index) as below:

| vp7_btv1s(3) | TIAARALTVMRACATLQEARIVLEANVMEIL |
|--------------|---------------------------------|
| vp7_btv10(5) | AARALTVMRACATLQEARIVLEANVMEIL   |
| vp7_btv1s    | GIAINRYNGLTLRGVTMRPTSLAQRNEMFFM |
| vp7_btv10    | GIAINRYNGLTLRGVTMRPTSLAQRNEMFFM |

#### file.pdb

You can enter the name of a **PDB** file at the first input line (instead of the multiple alignment file, file.aln). ESPript will extract a one letter code sequence, corresponding to all the residues contained in this PDB file. You can display the sequence of a single monomer defined by a chainID in the PDB file, by using the command chain\_X on the input line: file.pdb chain\_A

The extracted sequence is given the name of the input PDB file. This default can be changed, if the header of the PDB file contains a line starting by DBREF. The string of characters following DBREF will be the name of the extracted sequence: DBREF sequence\_name

You can also enter the name of a multiple alignment file, file.aln, and of a PDB file, file.pdb, on the first input line: file.aln file.pdb (see **Example 2**).

Then, a file named file\_bcol.pdb is created by ESPript from file.pdb. The occupancy factors of the original file file.pdb are replaced by similarity scores in file\_bcol.pdb.

Attention, similarity scores in file\_bcol.pdb have been rescaled between 0 and 100. This trick allows in a next step, to show conserved region along the structure with a nice colour ramping going from white to red. The command chain\_X allows to copy the similarity score of a chosen monomer in the output file\_bcol.pdb:file.aln file.pdb chain\_A

The output PDB file, file\_bcol.pdb, is used to produce a PyMOL cartoon representation as shown below (to that end, check Generate a PyMOL view ).



Residues with SimilarityGlobalScore lower than 0.7 are in white, conserved areas with SimilarityGlobalScore in the range 0.7-1.0 are colour-ramped in red with a 0-100 pseudo occupancy factor value.

#### Intermolecular contacts

A log file produced by **CNS** <sup>(11)</sup> can be read by ESPript to display protein:protein contacts (see **Example 4**). You can also use **ENDscript** to generate rapidly such a figure. A list of contacts is generated as follows:

· Crystallographic contacts - addition to CNS command file:

delete selection=(hydrogen) end flags exclude \* include pvdw end parameter nbond wmin=4.0 end end energy end

generates in CNS log file:

%atoms "A -62 -ASN -OD1 " and "C -112 -THR -C "(XSYM# 4) only 3.64 A apart

• Non-crystallographic contacts - addition to CNS command file:

flags exclude \* include vdw end parameter nbond wmin=0 end end distance cuton=0.0 cutoff=4 from =(segid A) to =(not segid A) end

generates in CNS log file:

atoms "A -90 -ALA -CB " and "B -181 -HIS -CE1 " 3.6958 A apart

Residue names, residue numbers, first letter of chainIDs and distances are extracted from the CNS log file. If the input line in ESPript is R A all, chainIDs of all residues in contact with molecule A are displayed on a bottom line named i\_A. The chainID character is in red if the distance is less than 3.2 Å and in **black** if it is in the range 3.2-5.0 Å. The shortest intermolecular distance is taken for each residue. Thus, a B would be written under residue 90, if the distance listed in the example above is the shortest between Ala90 chainID A and His181 chainID B. A A would be written under His181 on a new bottom line named i\_B with the command R B all.

Contacts can be further analysed looking to the figure produced by ESPript:

- A to Z, a to z or 0 to 9 means that the concerned amino acid residue has a non-crystallographic contact with an amino acid residue of the Chain A to Z, a to z or 0 to 9 (*e.g.* this amino acid residue is involved in a non-crystallographic interface).
- A to Z, a to z, 0 to 9 in italic means that the concerned amino acid residue has a crystallographic contact with an amino acid residues of the Chain A to Z, a to z or 0 to 9 (e.g. this amino acid residue is involved in a crystallographic interface).
- # identifies a contact between two amino acid residues having the same names and numbers (e.g. along a 2-fold symmetry axis).

file.2st

This file is an ASCII file from which ESPript will extract secondary structure information. The following formats are supported:

DSSP <sup>(12)</sup> (a PDB file can be directly uploaded if you use webESPript , DSSP being executed on the server) STRIDE <sup>(13)</sup> PHD <sup>(14)</sup>

 $\alpha$ -helices, 3<sub>10</sub>-helices and  $\pi$ -helices are displayed as medium, small and large squiggles respectively.  $\beta$ -strands are rendered as arrows, strict  $\beta$ -turns as TT letters and strict  $\alpha$ -turns as TTT. The secondary structures files of the two sequences have been entered in the excerpt below.

| α32          | α33                                   |
|--------------|---------------------------------------|
| 2222222222   | 000000000000                          |
| •            | •                                     |
| YEIARLQANMG  | QFRAALRRIMDDD<br>AQITNMLLNNQ          |
| Denniki GDI. | · · · · · · · · · · · · · · · · · · · |
| eelee e.     |                                       |
|              | α26                                   |

A verification is performed between residue names of the secondary structure file and of the chosen sequence (which is the first displayed by default). In case of problem, the program will try to align the two sequences **without gaps**. You get the following warnings, if some residues do not correspond between the two sequences:

Warning: DSSP residue M does not match seq residue D 2 sequence 1 column 2

If the program failed to align the two sequences, you get an error message:

Warning: DSSP residue M does not match seq residue D2 sequence1 column2Warning: DSSP residue D does not match seq residue T3 sequence1 column3.............Error: sec. structure elements are certainly misplaced

and the figure generated by ESPript gives you a **false** information.

A file produced by DSSP can include the positions of disulphide bridges. This information is rendered in ESPript by green digits (1 1, 2 2 ...) written under each column with a bound cystein.

Residues with alternate positions can also be flagged in the DSSP file (we use a modified version of DSSP on webESPript), in order to be marked by grey stars on the top of sequences blocks in the PostScript figure.

#### Accessibility

The relative accessibility of each residue can be extracted from DSSP<sup>(12)</sup> and PHD<sup>(14)</sup> files. It is rendered as blue-coloured boxes located at the last or first line of each block (see **Secondary Structures**). Note that DSSP include only protein atoms in its calculation of accessibility. Coordinates of water molecules, ligands... are not taken into account. The blue square scale is set as follow:

| colour                | value               | accessibility                                                                                   |
|-----------------------|---------------------|-------------------------------------------------------------------------------------------------|
| blue                  | 0.4 < A ≤ 1.0       | accessible                                                                                      |
| cyan                  | $0.1 \le A \le 0.4$ | intermediate                                                                                    |
| white                 | A < 0.1             | buried                                                                                          |
| blue with red borders | A > 1.0             |                                                                                                 |
| red                   | residue names betwe | not predicted in PHD <sup>(14)</sup> or<br>een sequence and DSSP <sup>(12)</sup><br>o not match |
|                       |                     |                                                                                                 |

#### Hydropathy

The hydropathic character of a sequence selected with the P command (P D 1 for first displayed sequence) is calculated according to the algorithm of Kyte & Doolittle <sup>(15)</sup> with a window of 3.

|                 |        |                                     |         |       | colour |      |       | values         |         |        |        |         | Hydropathy |       |        |      |      |      |      |      |
|-----------------|--------|-------------------------------------|---------|-------|--------|------|-------|----------------|---------|--------|--------|---------|------------|-------|--------|------|------|------|------|------|
|                 |        |                                     |         |       | colour |      |       | values         |         |        |        |         |            | τοραι |        |      |      |      |      |      |
|                 |        |                                     |         |       | pink   |      |       | H > 1.5        |         |        |        |         |            | hyd   | ropho  | bic  |      |      |      |      |
|                 |        |                                     |         |       |        | gre  | у     | -1.5 ≤ H ≤ 1.5 |         |        |        |         |            | inte  | rmedia | ate  |      |      |      |      |
|                 |        |                                     |         |       | cyan   |      |       | H < -1.5       |         |        |        |         |            | hyo   | drophi | lic  |      |      |      |      |
|                 |        |                                     |         |       |        |      |       |                |         |        |        |         |            |       |        |      |      |      |      |      |
|                 |        | Hydropathic values for each residue |         |       |        |      |       |                |         |        |        |         |            |       |        |      |      |      |      |      |
|                 | I      | V                                   | L       | F     | С      | М    | А     | G              | Т       | S      | W      | Υ       | Ρ          | Н     | Е      | Q    | D    | Ν    | К    | R    |
|                 | 4.5    | 4.2                                 | 3.8     | 2.8   | 2.5    | 1.9  | 1.8   | -0.4           | -0.7    | -0.8   | -0.9   | -1.3    | -1.6       | -3.2  | -3.5   | -3.5 | -3.5 | -3.5 | -3.9 | -4.5 |
|                 |        |                                     |         |       |        |      |       |                |         |        |        |         |            |       |        |      |      |      |      |      |
| Similarity s    | core   | s                                   |         |       |        |      |       |                |         |        |        |         |            |       |        |      |      |      |      |      |
| If Risler BLOSU | JM62   | PA                                  | M250    | ) or  | Iden   | tity | , sev | eral so        | cores   | are ca | alcula | ted:    |            |       |        |      |      |      |      |      |
| ■ in-Group Sc   | ore (/ | Sc) is                              | s a cla | assic | al co  | mput | ation | of a s         | similar | ity sc | ore wi | ithin e | ach g      | roup. |        |      |      |      |      |      |
| For a colur     | nn ma  | ade o                               | f 3 re  | esidu | es AC  | D:   |       |                |         |        |        |         |            |       |        |      |      |      |      |      |

For a column made of 3 residues ACD:  $ISc = (AC+AD+CD) \div 3$ 

• Cross-Group Score (XSc) is the similarity score average for every sequence pair, where each sequence belongs to a different group.

For a column made of 6 residues divided in 3 groups (ACD)(DE)(G): XSc = [(AD+AE+CD+CE+DD+DE)+6+(AG+CG+DG)+3+(DG+EG)+2] + 3

• Total Score (TSc) is the mean of in-Group Score and Cross-Group Score:

 $TSc = (ISc + XSc) \div 2$ 

The user specifies a threshold for **in-Group** (*ThIn*) and **Diff-Group** (*ThDiff*) scores. Colours are chosen according to the following rule:

- A Red box, white character → Strict identity.
- Y Red character (or black bold character with color scheme "Flashy") -> Similarity in a group: ISc > ThIn.
- T Blue frame (filled in yellow with color scheme "Flashy")  $\rightarrow$  Similarity across groups: TSc > ThIn.
- **Q** Green fluo box  $\rightarrow$  **Differences** between conserved groups: (*ISc-Xsc*)+2 > *ThDiff*.

· Similarity scores matrices

#### Risler matrix (16)

ACDEFGHIKLMNPQRSTVWY. A 22-15 2 17 6 6 -6 17 14 13 10 13 -2 18 15 20 19 20 -9 2-30 C-15 22-17-15-16-17-18-16-16-15-16-16-18-14-15-13-14-14-18-11-30 D 2-17 22 10 -3 -4-13 0 1 -2 -5 8-12 6 -1 7 0 0-14 -4-30 E 17-15 10 22 6 3 -6 15 14 9 6 14 -1 21 19 18 16 16-10 2-30 F 6-16 -3 6 22 -4-11 10 1 10 -2 4-11 7 4 5 3 8 -9 20-30 G 6-17 -4 3 -4 22-12 0 -1 -2 -4 2-12 2 1 7 2 1-13 -2-30 H -6-18-13 -6-11-12 22 -8-10 -9-12 -3-16 -5 -4 -4 -9 -7-17 -8-30 I 17-16 0 15 10 0 -8 22 10 21 9 9 -6 14 14 16 16 22 -7 4-30 K 14-16 1 14 1 -1-10 10 22 7 4 10 -7 17 21 14 12 12-11 5-30 L 13-15 -2 9 10 -2 -9 21 7 22 18 8 -8 11 12 13 12 20 -8 5-30 M 10-16 -5 6 -2 -4-12 9 4 18 22 0-12 12 11 6 8 8-13 -2-30 N 13-16 8 14 4 2 -3 9 10 8 0 22-10 16 12 19 11 11-11 -1-30 P -2-18-12 -1-11-12-16 -6 -7 -8-12-10 22 -6 -3 -3 -5 -6-16-12-30 Q 18-14 6 21 7 2 -5 14 17 11 12 16 -6 22 20 18 17 15-10 5-30 R 15-15 -1 19 4 1 -4 14 21 12 11 12 -3 20 22 20 19 15 -8 8-30 5 20-13 7 18 5 7 -4 16 14 13 6 19 -3 18 20 22 21 18 -8 4-30 T 19-14 0 16 3 2 -9 16 12 12 8 11 -5 17 19 21 22 16-10 3-30 V 20-14 0 16 8 1 -7 22 12 20 8 11 -6 15 15 18 16 22 -7 3-30 W -9-18-14-10 -9-13-17 -7-11 -8-13-11-16-10 -8 -8-10 -7 22 -6-30 2-11 -4 2 20 -2 -8 4 5 5 -2 -1-12 5 8 4 3 3 -6 22-30 

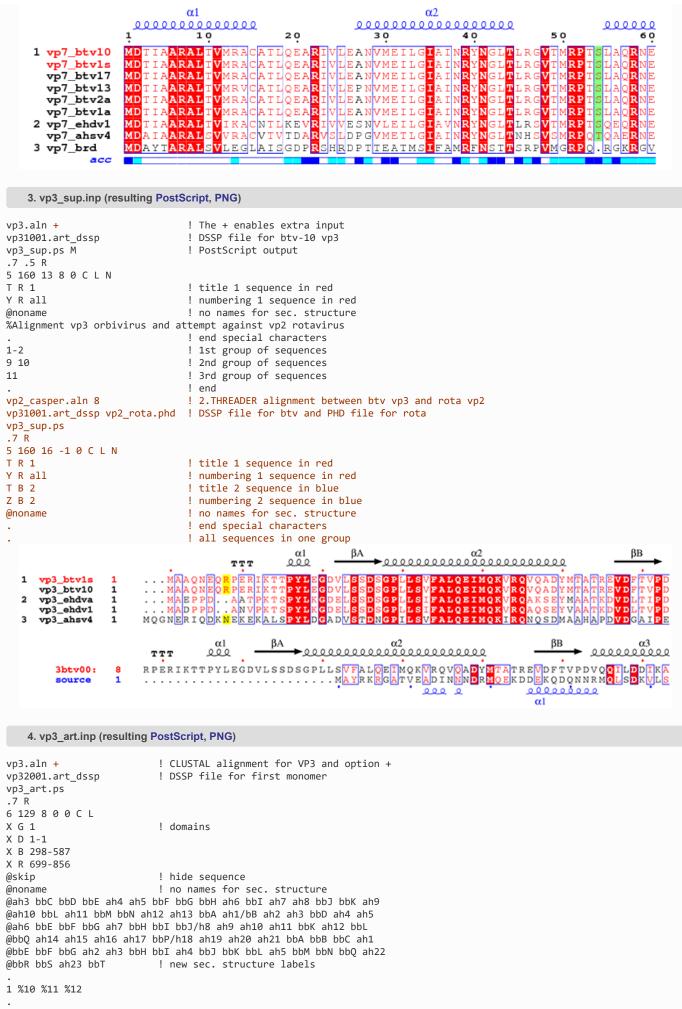
### PAM250 matrix (17)

A R N D C Q E G H I L K M F P S T W Y V . A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -4 1 1 1 -6 -3 0-15 R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2-15 N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -4 -1 1 0 -4 -2 -2-15 D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2-15 C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2-15 Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2-15 E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2-15 G 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 -1 1 0 -7 -5 -1-15 H -1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2-15 I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4-15 L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2-15 K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2-15 M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2-15 F -4 -4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 0 7 -1-15 P 1 0 -1 -1 -3 0 -1 -1 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1-15 S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1-15 T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0-15 W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6-15 Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2-15 V 0 - 2 - 2 - 2 - 2 - 2 - 2 - 1 - 2 4 2 - 2 2 - 1 - 1 - 1 0 - 6 - 2 4 - 15 

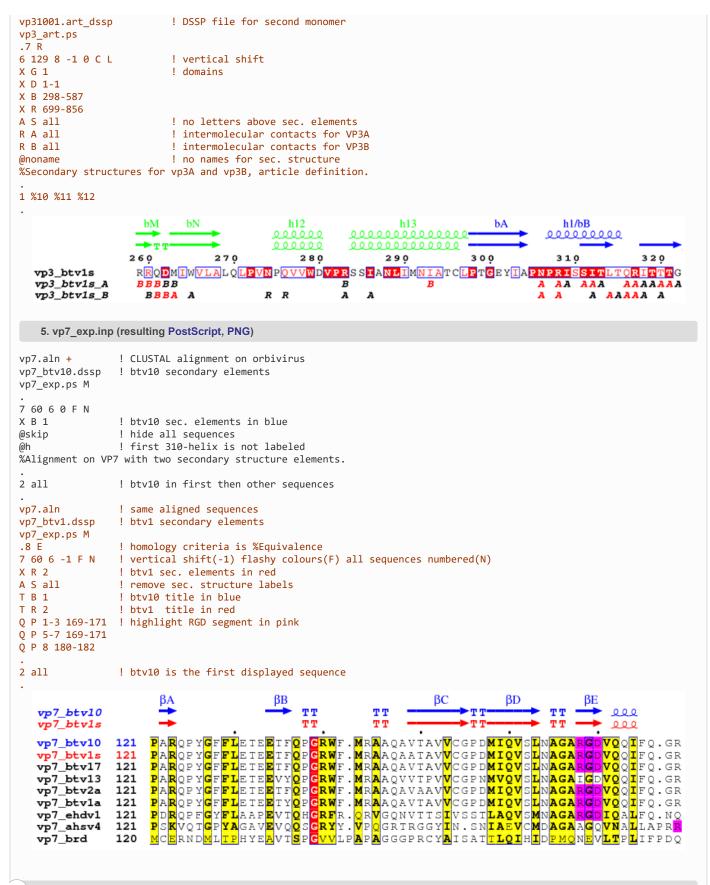
|   | А   | R   | N   | D   | с   | 0   | E   | G   | н   | I   | L   | К   | м   | F   | Р   | s   | т   | W   | Y   | v   |    |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| А | 4   | -1  | - 2 | - 2 | 0   | -1  | -1  | 0   | - 2 | -1  | -1  | -1  | -1  | - 2 | -1  | 1   | 0   | - 3 | - 2 | 0   | -4 |
| R | -1  | 5   | 0   | - 2 | - 3 | 1   | 0   | - 2 | 0   | - 3 | - 2 | 2   | -1  | - 3 | - 2 | -1  | -1  | - 3 | - 2 | - 3 | -4 |
| Ν | - 2 | 0   | 6   | 1   | - 3 | 0   | 0   | 0   | 1   | - 3 | - 3 | 0   | - 2 | - 3 | - 2 | 1   | 0   | -4  | - 2 | - 3 | -4 |
| D | - 2 | - 2 | 1   | 6   | - 3 | 0   | 2   | -1  | -1  | - 3 | -4  | -1  | - 3 | - 3 | -1  | 0   | -1  | -4  | - 3 | - 3 | -4 |
| С | 0   | - 3 | - 3 | - 3 | 9   | - 3 | -4  | - 3 | - 3 | -1  | -1  | - 3 | -1  | - 2 | - 3 | -1  | -1  | - 2 | - 2 | -1  | -4 |
| Q | -1  | 1   | 0   | 0   | - 3 | 5   | 2   | - 2 | 0   | - 3 | - 2 | 1   | 0   | - 3 | -1  | 0   | -1  | - 2 | -1  | - 2 | -4 |
| Е | -1  | 0   | 0   | 2   | -4  | 2   | 5   | - 2 | 0   | - 3 | - 3 | 1   | - 2 | - 3 | -1  | 0   | -1  | - 3 | - 2 | - 2 | -4 |
| G | 0   | - 2 | 0   | -1  | - 3 | - 2 | - 2 | 6   | - 2 | -4  | -4  | - 2 | - 3 | - 3 | - 2 | 0   | - 2 | - 2 | - 3 | - 3 | -4 |
| Н | - 2 | 0   | 1   | -1  | - 3 | 0   | 0   | - 2 | 8   | - 3 | - 3 | -1  | - 2 | -1  | - 2 | -1  | - 2 | - 2 | 2   | - 3 | -4 |
| I | -1  | - 3 | - 3 | - 3 | -1  | - 3 | - 3 | -4  | - 3 | 4   | 2   | - 3 | 1   | 0   | - 3 | - 2 | -1  | - 3 | -1  | 3   | -4 |
| L | -1  | - 2 | - 3 | -4  | -1  | - 2 | - 3 | -4  | - 3 | 2   | 4   | - 2 | 2   | 0   | - 3 | - 2 | -1  | - 2 | -1  | 1   | -4 |
| К | -1  | 2   | 0   | -1  | - 3 | 1   | 1   | - 2 | -1  | - 3 | - 2 | 5   | -1  | - 3 | -1  | 0   | -1  | - 3 | - 2 | - 2 | -4 |
| Μ | -1  | -1  | - 2 | - 3 | -1  | 0   | - 2 | - 3 | - 2 | 1   | 2   | -1  | 5   | 0   | - 2 | -1  | -1  | -1  | -1  | 1   | -4 |
| F | - 2 | - 3 | - 3 | - 3 | - 2 | - 3 | - 3 | - 3 | -1  | 0   | 0   | - 3 | 0   | 6   | -4  | - 2 | - 2 | 1   | 3   | -1  | -4 |
| Ρ | -1  | - 2 | - 2 | -1  | - 3 | -1  | -1  | - 2 | - 2 | - 3 | - 3 | -1  | - 2 | -4  | 7   | -1  | -1  | -4  | - 3 | - 2 | -4 |
| S | 1   | -1  | 1   | 0   | -1  | 0   | 0   | 0   | -1  | - 2 | - 2 | 0   | -1  | - 2 | -1  | 4   | 1   | - 3 | - 2 | - 2 | -4 |
| Т | 0   | -1  | 0   | -1  | -1  | -1  | -1  | - 2 | - 2 | -1  | -1  | -1  | -1  | - 2 | -1  | 1   | 5   | - 2 | - 2 | 0   | -4 |
| W | - 3 | - 3 | -4  | -4  | - 2 | - 2 | - 3 | - 2 | - 2 | - 3 | - 2 | - 3 | -1  | 1   | -4  | - 3 | - 2 | 11  | 2   | - 3 | -4 |
| Y | - 2 | - 2 | - 2 | - 3 | - 2 | -1  | - 2 | - 3 | 2   | -1  | -1  | - 2 | -1  | 3   | - 3 | - 2 | - 2 | 2   | 7   | -1  | -4 |
| V | 0   | - 3 | - 3 | - 3 | -1  | - 2 | - 2 | - 3 | - 3 | 3   | 1   | - 2 | 1   | -1  | - 2 | - 2 | 0   | - 3 | -1  | 4   | -4 |
|   | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | -4  | 1  |
|   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |

# 12 Input file examples

These examples above refer to a study made with the group of Prof. David STUART, **Division of Structural Biology** (Oxford) on viral proteins VP7 and VP3 in orbiviruses <sup>(19,20)</sup>.


# 1. vp2\_rota.inp (resulting PostScript, PNG)

vp2\_rota.phd ! mail from the Predict Protein server on vp2 rotavirus
\* A none ! shows predicted sec. str. elements and accessibility on the top of each block
.
.
. .
.7 E ! physico-chemical boxing
6 81 ! layout
@pp ! extracts all infos from the Predict Protein file
@noname ! no names for sec. structures
.
2-6 ! sequences to be displayed
.


|           |        |            |          | α1                          |           |            |             | α2                          | α3     |
|-----------|--------|------------|----------|-----------------------------|-----------|------------|-------------|-----------------------------|--------|
|           |        | معع        | ٩        | 000000000                   |           | ک          | 20000       | 00000000                    | ٥ ٥٥٥٥ |
|           | i      | 10         | 20       | 3 Q                         | 40        | 5 Q        | еò          | 7 Q                         | 8 Q    |
| vp2_rotbu | MAYRK  | GATVEADIN  | NNDRMQE  | DDEKQDQNNRM                 | LSDKVLSKK | EEVVTDSQEE | EIKIRDEVKKS | STKEESKQLLEV                | LKTKEE |
| vp2_rotbr | MAYRK  | RGARREANIN |          |                             | LSDKVLSKK |            |             | STKEESKQLLEV                |        |
| vp2_rots1 | MAYRK  | RGARRETNLK |          | EDSKNINNAKS                 |           | EEIITDNQEH | EVKISDEVKKS | SNKEES <mark>K</mark> QLLEV | LKTKEE |
| vp2_rothw | MAYRKI | RGAKRENLPQ |          | EIE <mark>K</mark> DvnNRKQQ |           | EEIITDAQDI | DIKIAGEIKKS | SSKEES <mark>K</mark> QLLEI | LKTKED |
| vp2_rotpc | MISRN  | RRNTQQKDA  | EKEKQTEN | IVEEKEIKEAKE                |           |            |             |                             |        |
|           |        |            |          |                             | SDK SKK   | E SQEI     | E KKS       | STKE                        | TKEE   |

# 2. vp7\_adv.inp (resulting PostScript, PNG)

| <pre>vp7.aln vp7_btv10.pdb<br/>vp7_btv10.dssp A<br/>vp7_adv.ps M<br/>.7 .5 R<br/>7 60<br/>U R 127 250<br/>S B 168-170 178-180<br/>X B 1-126 254-349<br/>X G 127-253<br/>T R 1-2<br/>@noname<br/>%Alignment for protein VP7.</pre> | <pre>! aligned sequences (from CLUSTALW) and pdb file<br/>! secondary structures (from DSSP)<br/>! PostScript output<br/>! similarity criteria<br/>! layout<br/>! -&gt; red triangles<br/>! -&gt; blue stars<br/>! -&gt; sec. structure information in blue<br/>! -&gt; sec. structure information in green<br/>! -&gt; names of btv sequences in red<br/>! no names for sec. structure</pre> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 1 3-6<br>7-8<br>9                                                                                                                                                                                                               | ! first group of sequences<br>! second group of sequences<br>! third group of sequences                                                                                                                                                                                                                                                                                                       |



vp3.aln vp3\_contact.log ! same alignment and CNS output for contacts



13 References

- 1. Wootton, J. C. and Federhen, S. (1996) Analysis of compositionally biased regions in sequence databases. *Meth. in Enzymol.* 266, 554-571
- Sigrist, C. J., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L. and Xenarios, I. (2013) New and continuing developments at PROSITE. *Nucleic Acids Res.* 41(Database issue), D344-347
- 3. Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res.* 16, 10881-10890
- 4. Bru, C., Courcelle, E., Carrère, S., Beausse, Y., Dalmar, S. and Kahn, D. (2005) The ProDom database of protein domain families: more emphasis on 3D. *Nucleic Acids Res.* **33**(Database issue), D212-D215

- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., 5. Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948
- 6. Sievers, F., Wilm, A., Dineen, D. G., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D. abd Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Sys. Biol. 7, 539
- Combet, C., Blanchet, C., Geourjon, C. and Deléage, G. (2000) NPS@: Network Protein Sequence Analysis. TIBS 25, 147-150 7.
- Pearson, W. R. (2014) BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol. Biol. 1079, 75-101 8 Gouy, M., Guindon, S. and Gascuel, O. (2010) SeaView version 4 : a multiplatform graphical user interface for sequence alignment 9.
- and phylogenetic tree building. Mol. Biol. Evol. 27, 221-224 Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., 10. Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., and Zardecki, C. (2002) Acta Cryst. D58, 899-907
- Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros P., Grosse-Kunstleve, R. W., Jiang J. S., Kuszewski, J., Nilges, M., 11 Pannu, N. S., Read, R. J., Rice L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Cryst. D54, 905-921
- Joosten, R. P., Te Beek, T. A. H., Krieger, E., Hekkelman, M. L., Hooft, R. W. W., Schneider, R., Sander, C. and Vriend, G. (2011) A 12. series of PDB related databases for everyday needs. Nucleic Acids Res. 39(Database issue), D411-D419
- 13. Frishman, D. and Argos, P. (1995) Knowledge-based secondary structure assignment. Proteins 23, 566-579
- Rost, B., Yachdav, G. and Liu, J. (2004) The PredictProtein server. Nucleic Acids Res. 32(Web Server issue), W321-W326 14
- Kyte, J. and Doolittle, R. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132 15
- 16. Risler, J. L., Delorme, M. O., Delacroix, H. and Henaut, A. (1988) Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. J. Mol. Biol. 204, 1019-1029
- Dayhoff, M. (1978) "Atlas of protein sequences and structure" National Biomedical Research Foundation. Washington, D.C., p. 345 17. 18.
- Henikoff, J. G. and Henikoff, S. (1996) Blocks database and applications. Meth. in Enzym. 266, 88-105
- Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Zientara, S., Mertens, P. P. C. and Stuart, D. I. (1998) The 19. atomic structure of the bluetongue virus core. Nature 395, 470-478
- Gouet, P., Diprose, J. M., Grimes, J. M., Malby, R., Burroughs, J. N., Zientara, S., Stuart, D. I. and Mertens, P. P. C. (1999) The 20. highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97, 481-490

User quide last revision: February 4th. 2025

SBGrid Consortium

© 2005-2025 The ESPript authors & CNRS - Contact: espript@ibcp.fr ESPript is an SBGrid supported application